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Abstract

A new region-based approach to nonrigid motion tracking
is described. Shape is defined in terms of a deformable
triangular mesh that captures object shape plus a color
texture map that captures object appearance. Photometric
variations are also modeled. Nonrigid shape registration
and motion tracking are achieved by posing the problem as
an energy-based, robust minimization procedure. The ap-
proach provides robustness to occlusions, wrinkles, shad-
ows, and specular highlights. The formulation is tailored
to take advantage of texture mapping hardware available
in many workstations, PC's, and game consoles. This en-
ables nonrigid tracking at speeds approaching video rate.

1 Introduction

A key open problem in tracking is that of encoding and
comparing shapes as they undergo nonrigid deformation.
Simply providing robustness to nonrigid deformation is
insufficient, because deformation often provides impor-
tant information about how shapes are related. To make
things worse, tracking must also cope with possible light-
ing changes, specular highlights, shadows, and occlusions.

In images, the motion of objects is sometimes due to
changes in viewing geometry: e.g., projective effects, or
change in object pose. In many such cases, a simple affine
model or eight parameter projective deformation model is
sufficient to encode the resulting image motions. However,
in general, these parameterizations are inadequate for rep-
resenting motions that arise due to a physical deformation.
For instance, most biological objects are flexible and artic-
ulated: fingers bend, cheeks bulge, fish swim, trees sway in
the breeze, etc. Shapes are stretched, bent, tapered, dented,
etc., and so it seems logical to employ a model that can
encode the ways in which real objects deform.

1.1 Related Work

This rationale led to the physics-inspired modeling
paradigm of active contours or snakes [18]. A snake has
a predefined structure that incorporates prior knowledge
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about a contour's smoothness and its resistance to defor-
mation.

While snakes enforced constraints on smoothness and
the amount of deformation, they could not in their original
form be used to constrain the fypes of deformation valid for
a particular problem domain or object class. Furthermore,
it was difficult to use snakes for recognition because of dif-
ferences in sampling and parameterization in comparing
recovered descriptions.

This led to the development of algorithms that enforce
a priori constraints on the types of allowable deforma-
tions for motion tracking [5, 10], deformable templates
{16, 34, 36], trainable snakes [2, 9], and deformable pro-
totypes [27]. Such approaches provide a low-dimensional
characterization of shape that enables recognition and
comparison of nonrigid motions.

Another promising family of approaches is based on
correlation of deforming image patches [3, 15, 21, 32).
These approaches integrate information over an image re-
gion, and therefore tend to be more immune to noise and/or
low-contrast, especially if a robust estimator formulation is
employed [4]. To date, most correlation-based models for
nonrigid motion require off-line processing, though multi-
scale techniques offer some hope for realtime performance
[15, 32]. Real-time approaches for tracking of parameter-
ized patches have been developed [12, 13]; however, these
methods do not address general nonrigid motion tracking.

1.2 New Approach: Active Blobs

To address the general nonrigid tracking problem, we will
introduce a new deformable model formulation: active
blobs. Active blobs employ a texture-mapped triangular
mesh model for tracking deforming shapes in color images.

The goal is to robustly track nonrigidly deforming
shapes at speeds approaching video frame-rate on a stan-
dard graphics workstation. To gain better robustness, ac-
tive blobs incorporate information about not only shape,
but also color image appearance. Active blobs also pro-
vide some robustness to photometric variations, includ-
ing specular highlights and shadows. By taking advantage
of texture mapping hardware available in many worksta-
tions, active blobs have achieved peak rates of over twelve
frames/sec. on an SGI Indigo2 Impact R10K.
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Figure 1: Model construction using a color image. From
left to right: a.) input image with region of interest over-
laid, b.) resulting triangle mesh, c.) texture mapped model.

2 'The Basic Idea

The construction of an example active blob model is shown
in Fig. 1. The input to blob construction is an example im-
age plus segmentation information — provided as a binary
support region or as a contour that encloses the shape. The
input can also include interior feature points to be used as
nodes in the triangular mesh. In this example, the user cir-
cled the object of interest.

A 2D active blob model is then constructed using a
modified Delaunay triangular meshing algorithm. To de-
form the model, we deform this mesh. Nonrigid defor-
mation of the mesh can be specified in terms of paramet-
ric functions; e.g., affine deformations, eight parameter
projective deformations, application-specific deformations
[31, finite element modal deformations [22, 28], or princi-
pal deformations derived from a statistical analysis over a
training set of shapes [9, 20, 21].

The blob's appearance is then captured as a color tex-
ture map and applied directly to the triangulated model. A
.blob warp is defined as a deformation of the mesh and then
a bilinear resampling of the texture mapped triangles. By
defining image warping in this way, it is possible to har-
ness hardware accelerated triangle texture mapping capa-
bilities becoming prevalent in mid-end workstations, PC's,
and computer game consoles (e.g., Nintendo 64).

Tracking is then posed as the problem of active blob
registration. The registration procedure minimizes a func-
tion that accounts for both the priors on shape (the defor-
mation parameters) and the priors on appearance (the color
texture map). Through the use of a robust error norm, reg-
istration can be made robust to specular highlights, shad-
ows, some photometric variations, and small occlusions.
Furthermore, the use of color imagery enables tracking in
situations where grayscale tracking might be less robust.

An example of nonrigid tracking with an active blob is
shown in Fig. 2. The user defined a rectangular region of
interest. A finite element modal parameterization was then
employed for tracking. As can be seen, the blob model
tracks the bag of candy quite well, despite nonrigid defor-
mation, wrinkles, shadows, and specular highlights.

Figure 2: Nonrigid tracking with an active blob. This figure
shows every fifteenth frame in a tracking sequence. For vi-
sualization purposes, an outline of the active blob is shown
overlaid on the input images in the top row. The resulting
active blob tracking is shown below each input image.

3 Active Blob Formulation

In the active blobs formulation, nonrigid deformation is
controlled by parametric functions. These functions are
applied to the node points that define the active blob's 2D
triangle mesh. Image warping and interpolation are ac-
complished by displacing the mesh vertices and then re-
sampling using bilinear interpolation. Thus we define a
warping function for an input image, I:

I'=W(,u) ¢))

where u is a vector containing warping parameters, and I’
is the resulting warped image.

The warping parameters control functions that deform
the triangle mesh via displacement at the mesh node points:

X' = f(X,u), )

where the vector X contains the triangle node point loca-
tions x;, and X' contains the resulting displaced nodes.
Perhaps the simplest warping functions to be used in
Eq. 2 are those of a 2D affine model or an eight parameter
projective model [15, 32]. Unfortunately, these functions
are only suitable for approximating the rigid motion of a
planar patch. The functions can be extended to include lin-
ear and quadratic polynomials [3]; however, the extended
formulation cannot model general nonrigid motion.

3.1 Finite Element Modes

A more general parameterization of nonrigid motion can
be obtained via the use of the modal representation [22].
In the modal representation, deformation is represented in
terms of eigenvectors of a finite element (FE) model. The
underlying FE formulation offers the added advantage that




it can be used in obtaining a regularized solution to the
nonrigid tracking problem, since it can enforce a priori
contraints on smoothness and the amounts of deformation.

Taken together, modes form an orthogonal basis set for
describing nonrigid shape deformation [22, 28]. Blob de-
formation can be expressed as the linear combination of
orthogonal modal displacements:

X' =X+ ¢4 )

i=1

where ii; is the j** mode's parameter value, and the eigen-
vector ¢; defines the displacement function for the 5P
modal deformation.

The modes are ordered by increasing eigenvalue, w;.
These eigenvalues correspond with each mode's frequency
of vibration. For a 2-D problem, the first three modes are
translation and linearized rotation. The next lowest-order
modes correspond qualitatively with human's notions of
nonrigid deformation: scaling, stretching, skewing, bend-
ing, etc. The rest are higher-order nonrigid modes. Such
an ordering of shape deformation allows us to select which
types of deformations are to be observed. For instance,
it may be desirable to make tracking rotation, position,
and/or scale independent. To do this, we ignore displace-
ments in the appropriate low-order modes.

The modal decoupling also allows efficient and robust
solution to the alignment problem. By discarding high fre-
quency modes the amount of computation required can be
reduced without significantly altering tracking accuracy.
Discarding the highest-frequency modes can also make
tracking more robust to noise [22].

For a given modal parameter vector obtained in track-
ing, we can compute the strain energy associated with
modal deformation:

m
Emodal = Y _ U35, )
j:l

Each eigenvalue w; defines the stiffness associated with
changes in a particular mode parameter. As will be ex-
plained in the next section, strain energy can be used to
enforce the prior probabilities on the shape's deformations.

3.2 Statistical Modes

As has been pointed out by Terzopoulos [33], and by
others {7, 8, 20], there is a well understood link be-
tween physically-motivated deformable models and statis-
tical estimation. Splines were perhaps some of the first
“physically-based” models employed in statistical estima-
tion [19]; they are particularly well-suited to modeling data
sampled from a Markov Random Field (MRF), with Gaus-
sian noise added [11]. The same principles hold true for

regularization'[6, 33], where the energies of a physical
model can be related directly with measurement and prior
probabilities used in Bayesian estimation [30].

Rather than modeling the system as an elastic material,
we can instead assume nothing about it, collect data sam-
ples of the displacements of each node, and then perform
a principal components analysis [9, 20, 21]. The princi-
pal directions are defined in terms of the eigenvectors and
eigenvalues of the displacement covariance matrix. Each
eigenvector defines a principal deformation, and can be
used directly in Eq. 3. The stiffness associated with each
mode is inversely proportional to its corresponding eigen-
value, and can be used directly in Eq. 4.

This connection leads to two useful observations. First,
using a FE model is equivalent to making assumptions
about the distribution of samples we expect to see. Not us-
ing any model, just collecting data and using statistics, on
the other hand, implies no a priori knowledge of this dis-
tribution and instead represents an attempt to statistically
approximate it through experimental observation.

3.3 Photometric Variation

We would also like to derive a parameterization for model-
ing brightness and contrast variations. It is possible to ac-
count for photometric variation by extending our previous
warping function to include brightness and contrast terms:

I' = cW(Tu)+b, )
blz,y,a) = ooz +ozy+osy+os, (6)
c(z,y,@) = T+ aszy +ogy + a7, @)

where « is a vector of coefficients for bilinear functions
that vary with image coordinates (z, y).

In our current system, the photometric correction terms
are defined to scale the red, green, and blue channels
equally. Photometric correction is accomplished via image
blending capabilities provided by the graphics workstation.

3.4 Combined Parameterization

Deformation and photometric parameters can be combined
in generic parameter vector a. The generic form allows us
to utilize active blobs with any combination of the above
parameterizations. The image warping function becomes:

I' = w(l,a), (®
and the deformation energy term becomes:
m
Edeformatian = Z a?'w? . &)
j=1

where ¢;‘-’ are the stiffnesses associated with each param-
eter. If no stiffness value is available for a particular pa-
rameter, then it is set to zero. The stiffnesses can also be
determined via statistical estimation [8, 20].




4 Active Blob Registration

The goal of our system is nonrigid shape tracking. To
achieve this, the system recovers warping parameters that
register a template image Ip with a stream of incoming
video images. The maximum likelihood solution to this
two image registration problem consists of minimizing the
squared error for all the pixels within the blob:

13
Eimage = ;Z-Ze? (10)
=1
ei = |U(zi,y:) — i, v:)ll, (11)

where I'(z;,y;) is a pixel in the warped template image as
prescribed in Eq. 8, and I(z;,y;) is the pixel at the same
location in the input. The above equation is formulated for
comparing two color images; thus, it incorporates the sum
of squared difference over all channels at each pixel.

Traditional image registration can be easily corrupted
by outliers. The process can be made less sensitive to out-
liers if we replace the quadratic error norm with an influ-
ence function [14]:

1 n
Eimaye = ’T_L' Zp(ei: U)a (12)
i=1

where o is an optional scale parameter, and p is the influ-
ence function. Such functions are also known as robust
error norms [4]; they can be used to control the bias a par-
ticular measurement has on the registration solution.

If it is assumed that noise is Gaussian distributed,
then the optimal error norm is simply the quadratic norm
plei,0) = e?/20?. However, robustness to outliers can
be further improved via the use of a Lorentzian influence
function [4]:

e
o) (13)
This norm replaces the traditional quadratic norm found
in least squares. Using the Lorentzian is equivalent to the
incorporation of an analog outlier process in our objective
function [4]. The formulation results in better robustness
to specular highlights and occlusions. For efficiency, the
log function can be implemented via table look-up.

Equation 12 includes a data term only; thus it only en-
forces the recovered model's fidelity to the image measure-
ments. The formulation can be extended to include a regu-
larizing term that enforces the priors on the model param-
eters a:

p(ei7g) lOg(l +

1 n m
E = =3 pleno)+7) aif (19
' i=1 J=1

where « is a constant that controls the relative importance
of the regularization term, and the 1 are the “stiffnesses”
associated with each model term as described in Sec. 3.4.

4.1 Marquardt-Levenberg

Registration requires minimization of the residual error
with respect to the deformation and lighting parame-
ters. A common approach to multi-dimensional minimiza-
tion problems is the Marquardt-Levenberg method. This
method requires the first and second partial derivatives of
E with respect to the unknown model parameters a. For
the Lorentzian error norm, the first partials take the form:

- I e 09
The second partials take the form:
&8E
Balaak -

2 Z [ 202 —¢2 oI oY L 821
202 + 62)2 6ak aal 202 + 6? Oajay

2'yzl)k ifk=1
{ 0 ifk#l (16)
The part1a1 ~ with respect to a particular model pa-

rameter a, can be approx1mated by adding small § to that
parameter, warping the model, and then measuring the re-
sulting change in the residual error. All gradient calcula-
tions can be made more efficient via the use of the available
graphics hardware texture mapping capability.

Following [23], the partials are then used to approxi-
mate Hessian matrix H and a weighted gradient vector g.
It is conventional to drop the image second derivative term
and remove the factors of two, thereby defining:

_ 1 i €; or
g9 = Z %07 + &2 Day + ik, (17)
n
_ 20% —¢? BT AT
= Z (202 + 62)2 Bax, 0a;
')"(ﬁk ifk=1
{ 0 ifk#l (18)

The deformation and photometric correction parameters
are then iteratively updated by solving the linear system:

(H+M)Aa =g, (19)

where A is a stabilization parameter. The stabilization pa-
rameter is initially set to a large value. At each iteration,
the A is increased/decreased by a scale factor (typically an
order of magnitude) depending on whether the error resid-
ual has increased or decreased.

This minimization procedure is iterated until the per-
centage change in the error residual is below a threshold,
or the number of iterations exceeds some maximum. At
each iteration, the partial derivatives, approximate Hessian
and gradient vector are recomputed.




4.2 Difference Decomposition

Marquardt-Levenberg requires the calculation of O(N)
gradient images and O(N?) image products per iteration
of minimization, where N is the number of model param-
eters. Despite the use of graphics hardware in acceler-
ating this calculation, this is still the performance bottle-
neck, and therefore an algorithm that decreases the num-
ber of gradient calculations is needed. As an alternative,
we can use a difference decomposition approach[12]. The
approach offers the benefit that it requires the equivalent
O(1) image gradient calculations and O(N) image prod-
ucts per iteration.

In the difference decomposition, we define a basis of
difference images generated by adding small changes to
each of the blob parameters. Each difference image takes
the form:

by = 1o — W(Ip, ng), (20)

where Iy is the template image, and ny is the parameter
displacement vector for the k** basis image, by. Each re-
sultant difference image becomes a column in a difference
decomposition basis matrix B. This basis matrix can be
determined as a precomputation.

During tracking, an incoming image I is inverse warped
into the blob's coordinate system using the most recent
estimate of the warping parameters a. We then compute
the difference between the inverse-warped image and tem-
plate:

D=1, - Wi(i,a). 1)

This difference image D can then be approximated in
terms of a linear combination of the difference decomposi-
tion's basis vectors:

D =~ B7q, (22)

where q is a vector of basis coefficients.
Thus, the maximum likelihood estimate of q can be ob-
tained via least squares:

q=(BTB)'BTD. (23)

The change in the image warping parameters is obtained
via matrix multiplication:

Aa = Ngq, 24)

where N has columns formed by the parameter displace-
ment vectors n used in generating the difference basis.
The basis and inverse matrices can be precomputed; this is
the key to the difference decomposition's speed.

The difference decomposition can be extended to incor-
porate the robust error norm of Eq. 13:

bi(zi,y:) = sign(bg(zs, ¥:))Vp(br(z:, v:), 0),

(25)

where by (z;, ;) is the basis value at the i** pixel. The
difference template D is computed using the same formula.

Furthermore, the formulation can be extended to in-
clude a regularizing term that enforces the priors on the
model parameters. This is accomplished using a con-
strained least squares formulation. The energy term to be
minimized takes the form:

E = [Bq-D}|"[Bq-D]+7q"Pq, (26)

where P = NT¥2N.
Differentiating with respect to q and then rearranging
terms, we obtain the constrained least squares solution:

q=[BTB ++P] ' B7D. en

If needed, this minimization procedure can be iterated at
each frame until the percentage change in the error residual
is below a threshold, or the number of iterations exceeds
some maximum,. '

S Implementation

Active blobs have been implemented using both the affine
parameterization and the more general, FE modal param-
eterization. For tracking, both the Marquardt-Levenberg
and difference decomposition minimization algorithms
were implemented and tested. Details of this implemen-
tation will now be described.

Blob construction starts with the determination of a sup-
port region for the object of interest. The bounding con-
tour(s) for a support region can be extracted via a standard
4-connected contour following algorithm [24]. Alterna-
tively, the user can define a bounding contour for a region
via a sketch interface. In general, the number of contour
segments must be reduced. We utilize the tolerance band
approach, where the merging stage can be iteratively alter-
nated with recursive subdivision [17]. In practice, a single
merging pass is sufficient if for a user-sketched boundary.

The triangles are then generated using an adaptation of
Ruppert's Delaunay refinement algorithm [25, 29], which
can produce consistent meshes for two-dimensional polyg-
onal boundaries that can be concave and can include holes.
Interior node points may also be specified; this allows for
the inclusion of interior features in the active blob model.
The algorithm accepts two parameters that control angle
and triangle size constraints. To satisfy these constraints,
additional interior vertices may be added to the original




polygon during mesh generation. The source code is avail-
able from http://www.netlib.org/voronoi/.

Once a triangle mesh has been generated, a RGB color
texture map is extracted from the example image. Each tri-
angle mesh vertex is given an index into the texture map
that corresponds to its pixel coordinate in the undeformed
example image Ip. To improve convergence and noise im-
munity in tracking, the texture map is blurred using a Gaus-
sian filter. Texture map interpolation and rendering were
accomplished using OpenGL.

Given a triangle mesh, the FE model can be initial-
ized using Gaussian interpolants with finite support. Due
to space limitations, readers are directed to [26] for the
mathematical formulation and pseudocode. The general-
ized eigenvectors and eigenvalues are computed using code
from the EISPACK library: http://www.netlib.org/eispack/.

If tracking is to be accomplished via the difference de-
composition, then the needed basis images are precom-
puted. In practice, four basis vectors per model parame-
ter are sufficient. For each parameter a;, these four basis
images correspond with the difference patterns that result
by tweaking that parameter by +4; and +24;. The factor
26; corresponds to the maximum anticipated change in that
parameter per video frame.

6 Examples

The aforementioned system was implemented on a SGI In-
digo2 Impact with an R10K processor running at 195 MHz
with 192 MB of RAM. This workstation provides texture
map acceleration in hardware. All performance statistics
are reported for unoptimized code. Experiments were con-
ducted using both minimization methods.

In the first example, Fig. 3, an active blob is used to
track a region on a deforming green ball. This tracking
was done on-line. In other words, the system tracked using
the current frame taken from live video input. If tracking
computation per frame could not keep up with full video
frame-rate, then in-between frames were skipped.

Frames from the original video sequence are shown in
the top row of Fig. 3. The region contained 2394 pixels,
and deformation was modeled using the ten lowest-order
modal parameters. The recovered active blob tracking for
Marquardt-Levenberg is shown below each input image.
Using the Marquardt-Levenberg minimization technique,
this example ran at an average of two frames a second, with
on average 2 to 3 iterations required for convergence. The
precomputation time was 0.13 secs.

The same sequence was successfully tracked using the
difference decomposition, at an average rate of 12.4 frames
per second. Precomputation of the difference basis and ma-
trix inverses took six seconds.

Figure 4 shows another on-line tracking example, this

time tracking a bag of candy. The user circled the region
of interest, as shown in the upper left hand corner of Fig. 4.
The resulting active blob contained 2680 pixels, and defor-
mation was modeled using the twenty lowest-order modal
parameters.

The figure shows every twentieth frame in the tracking
sequence. The resulting difference decomposition track-
ing is shown below each input image. Tracking was ac-
complished at 8.4 frames per second via the difference de-
composition. The required precomputation for basis and
inverse matrices took 21 CPU seconds. As can be seen,
tracking performs well, despite very large deformations
and changes in orientation, specular highlights, and mov-
ing shadows.

The same sequence was tracked using Marquardt-
Levenberg, at an average rate of 0.9 frames per second.
Tracking was less successful, diverging part way through
the sequence. This problem can be solved when the
Marquardt-Levenberg procedure is run off-line, allowing
tracking using all frames from the video sequence.

7 Discussion

The active blobs formulation allows tracking of nonrigidly
deforming color regions at over twelve frames per second
when the difference decomposition is employed. This is
because the active blobs formulation is tailored to take ad-
vantage of texture mapping hardware available in many
workstations, PC's, and game consoles. In our experience,
higher speed tracking is possible if smaller blobs are used.

As was expected, Marquardt-Levenberg is much slower
than the difference decomposition. This is due mainly to
the number of image operations calculated per iteration, as
explained in Sec. 4.2. This makes Marquardt-Levenberg
ill-suited for on-line tracking, unless motions are slow.

Tracking speed is dependent on two parameters: num-
ber of pixels included in the blob, and number of deforma-
tion parameters employed in tracking. Our experience has
shown that for either minimization method, the amount of
computation needed per minimization iteration scales ap-
proximately linearly with the number of pixels. Varying
the number of triangles used in the blob does not impact
tracking speed significantly.

As seen in the examples, the robust error norm enables
reliable tracking, despite nonrigid deformations, photomet-
ric changes, and small occlusions.
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Figure 3: On-line tracking of a deformable ball. Marquardt-Levenberg minimization averaged 2 frames/sec, while the
difference decomposition averaged 12.4 frames/sec. For visualization purposes, an outline of the active blob is shown

overlaid on the original input images. The recovered active blob warps for Marquardt-Levenberg are shown below each
input image. Difference decomposition tracked with comparable accuracy.

Figure 4: On-line tracking a deforming plastic bag filled with candy using difference decomposition. This figure shows
every twentieth frame in the tracking sequence. For visualization purposes, an outline of the active blob is shown overlaid on
the original input images. Marquardt-Levenberg minimization averaged 0.9 frames/sec, while the difference decomposition
averaged 8.4 frames/sec. Results for the difference decomposition are shown below each input image. Marquardt-Levenberg
was not able to track the object completely through this sequence.




References

[11 K. Bathe. Finite Element Procedures in Engineering Anal-
ysis. Prentice-Hall, 1982.

[2] A.Baumberg and D. Hogg. Learning flexible models from
image sequences. In Proc. ECCV, pp. 299-308, 1994,

[3]1 M. Black and Y. Yacoob. Tracking and recognizing rigid
and non-rigid facial motions using local parametric models
of image motion. In Proc. ICCV, 1995.

[4]1 M.J. Black and A. Rangarajan. On the unification of line
processes, outlier rejection, and robust statistics with appli-
cations in early vision. IJCV, 19(1):57-91, 1996.

[5] A. Blake, R. Curwen, and A. Zisserman. A framework for
spatiotemporal control in the tracking of visual contours.
LJICV, 11(2):127-146, 1993.

[6] A.Blake and A. Zisserman. Visual Reconstruction. M.LT,
Press, 1987.

[7] T. Boult, S. Fenster, and T. O' Donnell. Physics in a fantasy
world vs. robust statistical estimation. in, Object Repre-
sentation in Computer Vision, vol. 994 of Lecture Notes in
Computer Science, pp. 277-296. Springer-Verlag, 1995.

[8] T. Cootes. Combining point distribution models with shape
models based on finite element analysis. In Proc. BMVC,
1994,

[9] T. Cootes, D. Cooper, C. Taylor, and J. Graham. Trainable
method of parametric shape description. Jmage and Vision
Comp., 10(5):289-294, 1992.

[10] J. Duncan, R. Owen, L. Staib, and P. Anandan. Measure-
ment of non-rigid motion using contour shape descriptors.
In Proc. CVPR, pp. 318-324, 1991.

[11] S. Geman and D. Geman. Stochastic relaxation, Gibbs dis-
tribution, and Bayesian restoration of images. PAMI, 6(11),
1984.

‘[12] M. Gleicher. Projective registration with difference decom-

position. In Proc. CVPR, pp. 331-337, 1997.

[13] G.D. Hager and P.N. Belhumeur. Real time tracking of im-
age regions with changes in geometry and illumination. In
Proc. CVPR, pp. 403410, 1996.

[14] FE Hampel, E. Ronchetti, P. Rousseeuw, and W. Stehel. Ro-
bust Statistics: The Approach Based on Influence Func-
tions. John Wiley, 1986.

[15] M. Irani and S. Peleg. Improving resolution by image regis-
tration. CVGIP: Graphical Models and Image Processing,
53:231-239, 1991.

[16] A.K.Jain, Y. Zhong, and S. Lakshmanan. Object matching
using deformable templates. PAMI, 18(3):267-278, 1996.

[17] R. Jain, R. Kasturi, and B. Shunck. Machine Vision.
McGraw-Hill, 1995.

[18] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active
contour models. IJCV, 1:321-331, 1987.

[19] G. Kimeldorf and G. Wahba. A correspondence be-
tween Bayesian estimation and on stochastic processes and
smoothing by splines. An. of Math. Stat., 41(2):495-502,
1970.

[20] J. Martin, A. Pentland, and R. Kikinis. Shape analysis of
brain structures using physical and experimental modes. In
Proc. CVPR, 1994.

[21] C. Nastar and A. Pentland. Matching and recognition us-
ing deofmrable intensity surfaces. In Proc. IEEE Sym. on
Comp. Vision, 1995. '

[22] A. Pentland and S. Sclaroff. Closed-form solutions for
physically-based shape modeling and recognition. PAMI,
13(7):715-729, 1991.

[23] 'W. Press, Brian Flannery, S. Teukolsky, and W. Vetterling.
Numerical Recipes in C. Cambridge U. Press, 1988.

[24] A.Rosenfeld and A. Kak. Digital Picture Processing. Aca-
demic Press, 1976.

[25] J. Ruppert. A Delaunay refinement algorithm for quality
2-dimensional mesh generation. J. of Algs., 18(3):548-
585,1995.

[26] S. Sclaroff. Modal Matching: A Method for Describing,
Comparing, and Manipulating Digital Signals. PhD thesis,
MIT Media Lab, 1995.

[27] S. Sclaroff and A. Pentland. Physically-based combinations
of views: Representing rigid and nonrigid motion. In Proc.
IEEE Workshop on Nonrigid and Articulate Motion, 1994,

[28] S. Sclaroff and A. Pentland. Modal Matching for Corre-
spondence and Recognition. PAMI, 17(6):545-561, 1995.

[29] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator. In Proc. ACM Work-
shop on App. Comp. Geom., pp. 124-133, 1996.

{30] R.Szeliski. Bayesian Modeling of Uncertainty in Low-Level
Vision. Kluwer, 1989. ' "

[31] R. Szeliski. Video mosaics for virtual environments. JEEE
CG&A, 16(2):22-30, 1996.

[32] R. Szeliski and J. Coughlan. Hierarchical spline-based im-
age registration. In Proc. CVPR, pp. 194-201, 1994,

[33] D. Terzopoulos. Regularization of inverse visual problems
involving discontinuities. PAMI, 8(4):413-424, 1986.

[34] D. Terzopoulos. On matching deformable models to im-
ages: Direct and iterative solutions. In Topical Meeting on
Machine Vision, vol. 12 of Tech. Digest Series, pp. 160-167,
1987. Optical Soc. of America.

[35] L. Williams. Pyramidal Parametrics. Comp. Graphics,
17(3):1-11, 1983.

[36] A. Yuille, D. Cohen, and P. Hallinan. Feature extraction
from faces using deformable templates. In Proc. CVPR,
pp. 104-109, 1989.




T m et m = mweemre e e | OMBNo. 07040188

.. § Pupiic redorting burcen for this collection of informaticn s ssumated to average 1 hour perresposse, including the time for reviewinig instructions, searching existing data sources,
-t e . “gathenng and maintaiming the data needed, and comipieting and reviewing the collection of information. Send comments regarding this burden estimate or any otber asoect of this |-

- coliesuien cf information, including suggestions for reducing this.burden, 10 Washington Headauarters Services, Directorate for information Operations and Reperti, 1215 Jefferson
"} Daves Highesay, Suite 1204, Arlington, VA 22202-4302, and 16 the Otice of Management and Buaget, Paperwork Reduction Project (0704-0188), Washungton, DC 20503.

1. AGENCY USE ONLY {Leave biank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
’ : ' August 1998 . , L
4. TITLE AND SUBTITLE ' R - 5. FUNDING NUMBERS

Active Blobs | . ' G N00014-96~1-0661

6. AUTHOR(S) ;
Stan Sclaroff and John Isidoro

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . ’ 8. PERFORMING ORGANIZATION

. . REPORT NUMBER
Computer Science Department '

Boston University C o ‘ sclaroff-ONR-
111 Cummington  Street TR97-008
Boston, MA 02215 ;.

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) » "1 10. SPONSORING/MONITORING

. AGENCY REPORT NUMBER
Department of the Navy .

Office of Naval Research
Ballston Centre Tower One
800 North Quincy Street

Arlineton. VA 22217-5660
11. SUPPLEMENTARY NQOTES

123. DISTRIBUTION / AVAILABILITY STATEMENT . 12b. DISTRIBUTION CODE

Approved for public release.

13. ABSTRACT (Maximum 200 words) :
A new region-based approach to nonrigid motion tracking is described. Shape is
defined in terms of a deformable triangular mesh that captures object shape
plus a color texture map that captures object appearance. Photometric
variations are also modeled. Nonrigid shape registration and motion tracking
.are achieved by posing the problem as an energy-based, robust minimization
procedure. The approach provides robustness to occlusions, wrinkles,
shadows, and specular highlights. The formulation is tailored to take-
advantage of texture mapping hardware available in many workstations, PC's,
and game consoles. " This enables nonrigid tracking at speeds approaching
video rate. :

14. SUBJECT TERMS 15. NUMBER OF PAGES

Nonrigid shape, video database, motion description-and R
recognition : 16. PRICE CODE
17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 13. SECURITY CLASSIFICATION..].20. LINMITATION OF ABSTRACT
OF REPORT ; OF THIS PAGE 1 7 oF aBSTRACT it i
unclassified unclassified { unclassified o UL

NSN 7530-01-280-5500 ) standard Form 298 (Rev. 2-89)
. Prescibed by, ANS! Stg 238.18

. : ’ ' N ' T eeShae b N St .
co = ‘ : POEALL )




